If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-8x+(-7)=0
We add all the numbers together, and all the variables
16x^2-8x-7=0
a = 16; b = -8; c = -7;
Δ = b2-4ac
Δ = -82-4·16·(-7)
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-16\sqrt{2}}{2*16}=\frac{8-16\sqrt{2}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+16\sqrt{2}}{2*16}=\frac{8+16\sqrt{2}}{32} $
| 16x^2-8x+(-8)=0 | | 16x^2-8x+(-6)=0 | | -8n+17=-7n-9 | | 16x^2-8x+6=0 | | 3x-7=5(2x-3)+4 | | 17x-21=51-9x | | 17=20+3w | | 5/28=x/4 | | 7x=-44.8 | | 9=5/y | | -100+x=300 | | 15+2(3x-7)-(5+x)=31 | | 4/3=m+4/1 | | -4x²+10x+6=0 | | 7x+3-4x-5=21-11 | | 22=17+x | | 3(x-4)^2-72=0 | | 4(-33/20)+2y=3 | | 0=5300y+90 | | 5(x-4)=3x+3 | | 14x^2+29x^-1-15=0 | | 4/7t-1/14t=t-3/3 | | 4x-5=-6(2x-1/2) | | 4(x-5)=-3x-6 | | 13x=(x-8)×21 | | 1/2(a−2)=2/3a−6 | | 12(a−2)=23a−6 | | 14-3x=-21 | | 7.4=0.5*9.8*t^2 | | 7.4=9.8/2t^2 | | 7.4=9.8t^2 | | 3+2x-(x+1)=x+1+x |